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Abstract. In the paper, we construct security estimations of Poseidon hash function against

non-binary linear and differential attacks. We adduce the general parameters for the Poseidon hash

function that allow using this hash function in recurrent SNARK-proofs based on MNT-4 and MNT-6

triplets. We also analyse how to choose S-boxes for such function for this choice to be optimal from

the point of view of the number of constraints and security. We show how many full rounds are

sufficient to guarantee security of such hash function against non-binary linear and differential

attacks. We also calculate the number of constraints per bit achieved in the proposed realizations

and demonstrate a considerable gain as compared to the Pedersen hash function.

Keywords: SNARK, constraints, Poseidon hash function, non-binary linear and differential

cryptanalysis.

INTRODUCTION

One of the most important problems arising in construction of SNARK-proofs and STARK-proofs [1–3] is

reduction of the number of constraints describing algorithms in the respective SNARK-system. The construction of such

proofs begins with the fact that a certain transformation (for example, a hash function) should be described as a system of

certain equations of many variables over a finite field whose left-hand side contains a polynomial of many second-degree

variables, and the right-hand side contains a polynomial of many variables of the first degree. These equations are called

constraints, and their complexity determines the complexity of constructing the appropriate SNARK-proof. Most often

SNARK-proofs are used to prove knowledge of the pre-image of some hash function. Therefore, the hash functions used

in such blockchains should be designed so that they can be described by as few constraints as possible.

One of the first hash functions convenient for constructing SNARK-proofs was the Pedersen hash function [4, p. 134].

It is based on operations in a group of points of an elliptic curve, which, in turn, can be reduced to operations in the

corresponding finite field. Since constraints are polynomials just over such a field, the number of constraints required to

specify such a hash function is ten times less than for “classical” hash functions that operate with byte and bit operations

(about 1.68 constraints per 1 bit of input). This number of constraints is quite acceptable but the question of reducing it still

remains relevant. The Poseidon hash function proposed in [5] appeared to be quite a good construction with respect to the

number of constraints. For this function, the number of constraints is up to 15 times smaller than for the Pedersen hash

function. Utilization of this function in SNARK-systems requires provision of a full substantiation of its security against
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the main applicable cryptographic attacks. The Poseidon hash function is based upon the SPONGE construction [6] that uses

the HADES block cipher algorithm [7] as the inner permutation. For this reason, the main part of the security substantiation

for the Poseidon hash function is to show that the HADES algorithm is indistinguishable from a random permutation [5, 6].

The authors of the HADES algorithm, and later the authors of the Poseidon hash function adduced very detailed

substantiations for security of these constructions against some class of attacks they called “algebraic attacks.” However, for

these algorithms, substantiation of security against linear and differential cryptoanalysis attacks was to a large extent empirical

and requires further analysis to achieve a strict formal substantiation. For example, in substantiation of the algorithm security

against linear attacks, the authors considered coordinate functions of S-boxes demonstrating that in fact they analyzed its

security against classical linear attacks. However, as shown in [8, 9], for non-binary ciphers it is necessary to analyze security

specifically against non-binary linear cryptoanalysis, as both the key adder and the linear layer use operations in the prime

field instead of binary operations. The similar situation takes place with respect to the differential cryptanalysis.

The purpose of this paper is to obtain security estimates of Poseidon hash function against non-binary linear and

differential attacks, show how many full rounds would be sufficient to guarantee security of such hash function against

these attacks, and adduce the general parameters for the Poseidon hash function that allows using this hash function in

recurrent SNARK-proofs.

1. MATHEMATICAL MODEL OF THE POSEIDON

The Poseidon hash function [5] uses SPONGE construction [6] with a permutation named HadesMiMC [7] inside

it (see Fig. 1).

Three parameters describe this construction: capacity c, rate r, and permutation length N , where N c r� � . From

some practical consideration, we are interested in the case where N p� 3[log ] , c p� 2[log ] , and r p� [log ] , where

prime p is of special form, which provides compatibility with triplets MNT-4 or MNT-6 in CODA (now MINA) [10, 11].

Any permutation or block cipher may be used inside SPONGE. The authors of [7] suggested to use HadesMiMC as the

permutation that needs the least number of constraints per bit, when used in SNARK-systems. HadesMiMC may be

considered as a block cipher whose round functions are different in different rounds. The main idea of HadesMiMC is to

use rounds with full number of S-boxes and rounds with partial number of S-boxes (for example, only 1 S-box).

The general scheme of Hades is given in Fig. 2 (this figure is taken from [7] with all its designations, which are wide

used for block ciphers). Such construction allows reducing the number of constraints, while preserving security level

against different (statistical and algebraic) attacks.

Now we describe the mathematical model of the permutation HadesMiMC on which Poseidon is based.

Let p be a large prime, l be its bit length, l p� log .

Define a bijection s F Fp p: � as s x x p
u

( ) � mod , where ( , )u p� �1 1.

For some t N� define values x C Fp

t
, ( )� as x x xt� � �( )�

1

, C c ct� ( , ..., )

1

, where x c Fi i p, � , i t�1, . For

x Fp

t
�( ) define two mappings: S F Fp

t

p

tfull

: ( ) ( )� and S F Fp

t

p

tpart

: ( ) ( )� as

S x s x s xt

full

( ) ( ( ) ( ))� � ��

1

, S x x x s xt

part

( ) ( , ( ))� � ��

2 1

.

(1)

Finally, define a t t	 MDS-matrix A F Fp

t

p

t
:( ) ( )� .

Define the round functions for the permutation HadesMiMC. They are of two types: the round function with a full

S-box layer that is defined as f F F
C p

t

p

tfull

: ( ) ( )� , where for arbitrary C Fp

t
�( ) :

f x A S x C
C

full full

( ) ( )� 
� ,

(2)

and the round function with a partial S-box layer that is defined as f F F
C p

t

p

tpart

:( ) ( )� , where for arbitrary C Fp

t
�( ) :

f x A S x C
C

part part

( ) ( )� 
� ,

(3)

where x C x c x ct t
 � � � � �( )�

1 1

and “+” is field addition (addition modulo p) and S
full

, S
part

were defined in (1).
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Definition 1. A HadesMiMC-like permutation with parameters p t u r, , ,

full

, and r
part

is the family of

permutations H F F
p t u r r

p

t

p

t

C

( , , , , )

: ( ) ( )

full part

� parameterized by the set of round constants C � � �
�

( )C C r r1 2

�

full part

,

C Fi p

t
�( ) that are defined as

H x f f
p t u r r

C Cr r r
C

( , , , , )

( )

full part

full part f

full

�

�2

���

ull part full part full

full part part

� � � �r r r r

f f
C C

1 2 1

� ��� � �f f x
C Cr

full

full full

1

( ) .

(4)

If parameters p t u r, , ,

full

, and r
part

are set, we will write HC , for simplicity.

Note. The transformation (4) means that, for fixed set of constraints C � � �
�

( )C C r r1 2

�

full part

, we first apply

functions f f
C Cr1

full full

full

� �� , i.e., functions of the type (2) with a full S-box layer and with corresponding “round keys”

C Cr1

� ��

full

, and they are the first r
full

rounds of the transformation. Then we apply functions of the type (3) with a

partial S-box layer during r
part

round and with corresponding “round keys;” and then again apply r
full

rounds with

functions of the type (2).

2. CRYPTOGRAPHICAL SECURITY OF THE POSEIDON

2.1. Security in the Random Oracle Model. Security of SPONGE construction depends mostly on the security

of its internal permutation, HadesMiMC in our case. So we will pay a lot of attention to security of HadesMiMC. It was

proven in [12] that if an internal permutation is modeled as a randomly chosen permutation, then the SPONGE function

is indistinguishable from the random oracle up to 2

2ñ/
calls to it.

For some practical aspects, it is convenient to set c l p� 2 ( ) , so the maximal security level of the SPONGE construction

is l p( ) . It means that we should prove that the security level of the internal permutation is also no less than l p( ) . But we will

use stronger requirement to find the number of rounds of the permutation.

In what follows, under security estimations against differential and linear cryptanalysis of block cipher we will

understand the maximum of average (on keys) probabilities of its differential and linear characteristics, respectively.
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2.2. Security Against Linear and Differential Attacks. In this chapter we construct, rigorously proved, security

estimates for HadesMiMC against these two types of statistical attacks. Note that to construct estimates against

differential attacks, we mostly use known results or their generalizations. But to construct the similar estimates against

linear attacks, we had to prove a few non-trivial statements on sums of characters of the additive group of the finite field.

2.2.1. Security Estimates of Non-Binary Cipher HadesMiMC Against Differential Cryptanalysis. To construct

security estimates against differential cryptanalysis, we consider HadesMiMC as a block cipher. Further we use the

following results.

Definition 2 [13]. The block cipher E with the round function

f M K M: 	 �

(where M is an Abelian group w.r.t. some operation “*,” 0 is its neutral element) is called a Markov cipher w.r.t. “* ” if

� �x M, ,� � :

1 1

0

1

| |

( ( , * )* ( , ) , )

| |

( ( , )* ( , )

K
f k x f k x

K
f k f k

k K

� � � � �
�

�

�
�

�

�

�

1

, )�

k K

, (5)

where � is the Kronecker delta: �( , )

,

, .

x y
x y

�

�

�

�

1

0

if

else

Note. This definition can be easily generalized for the case where the round functions are different.

Definition 3 [14]. The branch number of the t t	 matrix A F Fp

t

p

t
: ( ) ( )� is

br A wt Ax wt x

x Fp

t

( ) min ( ) ( )

( ) \( , , )

� �

� 0 0�

{ },

where wt is the Hamming weight.

Note that if A is an MDS-matrix, then its branch number is maximal possible (for its size) and is equal to

br A t( ) � �1. For example, in our case, t � 3 and br A( ) � 4 .

Proposition 1. The block cipher (4) is a Markov cipher.

This proposition may be proven directly, by checking (5) for its round functions.

Proposition 2 (easily derived from [15]). For the Markov cipher (4), its security against differential cryptanalysis

is upper estimated with the value �

b
, where

� � � �

�

�

�
max ( ( ) ( ), )

,

*

� �

� � �

F x Fp
p

p
s x s x

1

, (6)

“+” is the field addition and b is the number of active S-boxes in all rounds.

Proposition 3 [14]. The number of active S-boxes in 2 sequential rounds with the round function (2) is no less

than br A( ) .

In the case if A is a t t	 MDS-matrix, br A( ) � �1 and, according to Proposition 3, the number of active S-boxes

in 2 sequential rounds with full S-box layer is no less than t �1. But if there are several rounds, each with only one

S-box, between two rounds with a full S-box layer, we cannot state anything about the number of active S-boxes in these

rounds, except that this number is no less than the number of rounds. It should be noted that the authors of [5] did not

take this detail into account when constructing security estimates against linear and differential cryptanalysis, and, as

a result, incorrect estimates were obtained.

Proposition 4 (obvious). The number of active S-boxes in all rounds of (4) is no less than the number of active

S-boxes in rounds with a full S-box layer.

Proposition 5 (corollary of Prop. 2 and Prop. 3). The number b of active S-boxes in (4) is no less than

b t
r

� � �

�

�

�

�

�

�

2 1

2

( )

full

, (7)
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and, if r
full

is even, is no less than

b t r� �( )1

full

.

Note. The inequality (7) implies that it is more efficient to have an even value r
full

, because one extra round that

makes r
full

odd does not increase the value in (7). So, in what follows, we will choose r
full

to be even.

In this chapter, we construct security estimates for HadesMiMC-like permutations with two types of S-boxes:

power functions and inverse S-boxes. Before proving the main results, we will need the following auxiliary statement

about parameters (6).

Proposition 6 [16].

1. Let s x x p
u

( ) � mod , where ( , )u p� �1 1. Then � �

�( )u

p

1

.

2. Let s x
x p x

( )

if ;

,

�

�


�

�

�
�

�1

0

0

mod

else.

Then � �

4

p
.

THEOREM 1. 1. Let r
full

be even, s x x p
u

( ) � mod , A F Fp

t

p

t
:( ) ( )� be a t t	 MDS matrix. Then the security

estimate of the block cipher (4) against differential cryptanalysis is upper bounded with the value

u

p

t r
��

�

�

�

�

 

!

!

�

1

1( )

full

. (8)

2. Let r
full

be even, s x x p( ) �

�1

mod , A F Fp

t

p

t
:( ) ( )� be a t t	 MDS matrix. Then security estimate of the

block cipher (4) against differential cryptanalysis is upper bounded with the value

4

1

p

t r
�

�

�

�

�

 

!

!

�( )

full

.

Proof. It is obvious using Propositions 1–6 and the fact that in this case

r r
r

full full

full

2 2

�

�

�

�

�

�

�

�

�

�

�

�

�

� . �

Usually a block cipher is considered to be practically secure against differential cryptanalysis if its security

estimate is no more than 2

�N
, where N is its block size. But in our case, as we showed in 2.1, the maximal security level

of SPONGE construction is l p p( ) log� . So, the weaker requirement may be formulated as

�

b p
"

�

2

log

.

However, we will use a stronger requirement. Moreover, to increase the security and make it closer to the

theoretical one, we require

�

b N
"

�

2

2

,

which means

u

p

t r

N��

�

�

�

�

 

!

!

"

�

�
1

2

1

2

( )

full

or

4

2

1

2

p

t r

N�

�

�

�

�

 

!

!

"

�

�

( )

full

, (9)

using statements 1 and 2 of Theorem 1 for powered and inverse S-boxes, respectively. Also in [5] the authors

proposed to add two extra full rounds, just for any case. But adding two full rounds (one at the beginning, and one at

the end) makes r
full

odd and does not increase security. So, if we decide to add some extra rounds, we should add

them in such a way that r
full

is even (i.e., when adding additional rounds we should provide even parity of r
full

).

As we can see from (9), a permutation with power S-boxes with u# 5 requires more rounds than with inverse ones,

for the same level of security. In the next chapter, we will discuss a type of S-boxes that is preferable from different

points of view.

2.2.2. Security Estimates of Non-Binary Cipher HadesMiMC Against Linear Cryptanalysis. According

to [9], the parameters that characterize practical security of a block cipher against linear attacks, essentially depend on the

structure of this cipher, and first of all, on the operation in the key adder. Thus, the practical security estimate (with
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respect to the field addition in Fp ) of a cipher E against linear cryptanalysis is the value

max ( , )

,

�

� �

� �

�

�

F

E b

p

ELP L ,

where b is the number of active S-boxes and the parameter L depends on the S-box (see Definition 15 and

explanation on p. 25 in [9]):

L L s
p

x s x

F x Fp
p

� �

�

�

�
( ) max ( ( ), ( ( )))

,

�

� �

� �
1

2

, (10)

where � and � are additive characters of Fp (characters of the additive group of this field).

The value b is the same as for the differential cryptanalysis, i.e., it is the number of all active S-boxes in the cipher.

Using the same consideration as in 2.1, we get b t r� �( )1

full

if r
full

is even (we consider only this case).

Proposition 7.

1. Let s x x p
u

( ) � mod , where ( , )u p� �1 1. Then L s
u

p
( )

( )

�

�1

2

.

2. Let s x
x p x

( )

if ;

, .

�

�


�

�

�
�

�1

0

0

mod

else

Then L s
p

( ) �

16

.

Proof.

1. First, let us estimate the value

( ( ) ( ( ))) ( ( ) ( ))� � � �x s x x x

x F x Fp p

�

� �

� �

13

. (11)

Note that the group ( , )Fp � is cyclic (with the generator g �1), so the corresponding group of characters (

�

, )Fp 	 is

also cyclic. Let � be the generator of (

�

, )Fp 	 . Then any element from this group, particularly characters � and �, can be

represented as

� �
�

� , � �
�

� ,

for some appropriate 0 1� � �� �, p .

Then

� � � � � � � � � � �
� �

( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x
13 13 13 13

� � � � � � , (12)

using the fact that � is a homomorphism.

Now we can rewrite (11) using (12) as

( ( ) ( )) ( )� � � � �x x x x

x F x Fp p

13 13

� �

� �
� � . (13)

Applying the Weil Theorem ([17], Theorem 5.38) to (13), we obtain

� � � � �

x Fp

x x x x p p

�

�
� � � � � �( ) ( ( ) )

13 13

1 12deg .

(14)

After application of (11)–(14) to (10), we obtain

L L s
p

x s x

F x Fp
p

� �

�

�

�
( ) max ( ( ), ( ( )))

,

�

� �

� �
1

2

� � � � � �

�

�
max ( )

,� �

� � �
1 1

12

144

13

2

2

p
x x

p
p

p
x Fp

.
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2. First, let us estimate the value

( ( ) ( ( ))) ( ( ) ( ))

*

� � � �x s x x x

x F x Fp p

� �

�

�

�

� �

1

1. (15)

Note that the group ( , )Fp � is cyclic (with the generator g �1), so the corresponding group of characters (

�

, )Fp 	 is

also cyclic. Let � be the generator of (

�

, )Fp 	 . Then any element from this group, particularly characters � and �, can be

represented as

� �
�

� , � �
�

� ,

for some appropriate 0 1� � �� �, p .

Then

� � � � � � � � � � �
� �

( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x
� � � �

� � � � � �

1 1 1 1

, (16)

using the fact that � is a homomorphism.

Now we can rearrange (15) using (16) as

( ( ) ( )) ( )

* *

� � � � �x x x x

x F x Fp p

�

� �

�

� �
� �

1 1

. (17)

Applying the theorem about the Kloosterman sum ([17], Theorem 1.5) to (17), we obtain

x F x x F x x
p p

x x x x p

�

�

� �

� �
� � � � � � �

*

( ) ( )

, :

� � � �

��

1

1 2

2 2 2

1 2 1 2

4 p . (18)

After application of (15)–(18) to (10), we obtain

L L s
p

x s x

F x Fp
p

� �

�

�

�
( ) max ( ( ), ( ( )))

,

�

� �

� �
1

2

� � �

�

�

�

�

�

�

 

!

!

!

� � � �

�

�

�
max (

,

*

� �

� � �
1

1

1

4

16

1

2

2

p
x x

p
p

p
x Fp

. �

THEOREM 2. 1. Let r
full

be even, s x x p
u

( ) � mod , A F Fp

t

p

t
:( ) ( )� be a t t	 MDS matrix. Then the security

estimate of the block cipher (4) against linear cryptanalysis is upper bounded with the value

( )

( )

u

p

t r

�
�

�

�

�

�

 

!

!

�

1

2

1

full

.

2. Let r
full

be even, s x x p( ) �

�1

mod , A F Fp

t

p

t
:( ) ( )� be a t t	 MDS matrix. Then security estimate of the

block cipher (4) against linear cryptanalysis is upper bounded with the value

16

1

p

t r
�

�

�

�

�

 

!

!

�( )

full

.

Proof. It is obvious using Propositions 1–5, Proposition 7, and the fact that in this case

r r
r

full full

full

2 2

�

�

�

�

�

�

�

�

�

�

�

�

�

� .�
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3. CHOICE OF S-BOXES

Choice of S-boxes should take into account the following aspects:

— the mapping s F Fp p: � should be bijective, i.e., for a power S-box the requirement ( , )p u� �1 1should be met;

— for reasons of security against linear and differential cryptanalysis, the parameters � and L (which depend only

on the S-box) should be as small as possible;

— in terms of SNARKs implementation complexity, the number of constraints (which also depends only on the

number and type of S-boxes) should be as small as possible.

Recall that for the inverse S-boxes, the parameters � and L are estimated by the upper bound as � �

4

p
and L

p
�

16

,

and for the power ones — as � �

�( )u

p

1

and L
u

p
�

�( )1

2

(Propositions 6 and 7). So, for the power S-boxes, it makes

sense to choose the parameter u as u N v p� � � �min :( , ){ }� 1 1 .

For the inverse S-boxes the parameters � and Lwill be smaller than for the power ones if u � 3 . So, in terms of the

cryptographic security, the most appropriate are either inverse or cubic S-boxes if the latest ones define a bijective

mapping. If p�1 is divided by 3, then inverse S-boxes have no competitors.

In terms of minimizing the number of constraints, inverse and power S-boxes with a small value of the parameter u

are also the most appropriate. Indeed, to describe an inverse S-box, 3 constraints are needed; to describe a cubic S-box —

2 constraints:

x x x

x x x

1 1 2

1 2 3

�

�



�

�

;

,

to describe an S-box s x x p( ) �

5

bmod , 3 constraints are needed:

x x x

x x x

x x x

1 1 2

2 2 3

1 3 4

�

�

�



�

�

�

�

;

;

,

etc., with an increase in the exponent u the number of constraints grows approximately as 2 log u . So, if p�1 is

divided by all relatively “small” prime 3, 5, 7, 11, …, then both the security requirements and the requirements for

simplicity of implementation lead to the choice of inverse S-boxes.

However, on the other hand, implementation of an inverse S-box is costly since it requires execution of the

Euclid’s algorithm, which, in turn, requires the order of $(log )p divisions with a remainder. Therefore, when choosing

an S-box, all factors must be taken into account and an acceptable compromise must be sought.

In the next Sec. 5, when calculating the algorithm parameters for specific values of the field characteristics, we

will consider two options for choosing of S-boxes: inverse and power, with the smallest exponent providing bijection.

4. NUMBER OF ROUNDS WITH FULL AND PARTIAL S-BOX LAYERS

AND FULL NUMBER OF CONSTRAINTS

Following [5, 7], we define the number of rounds with a full S-box layer, r
full

, as the minimal number of rounds

that guarantee security against differential and linear cryptanalysis (forward and backward). Then determine the number

of rounds with a partial layer of S-boxes, based on considerations of the security against algebraic attacks.

As noted, the authors of [5] also recommend adding two rounds just in case. However, after adding two rounds

(one at the beginning, one at the end), the value r
full

will become odd, i.e. adding two rounds will not increase the

security against statistical attacks. If we add two rounds at the beginning and end, it will significantly increase the

number of constraints. We do not see a reasonable need to increase the number of rounds with a full layer of S-boxes,

especially in a situation where the number of constraints is critical.
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The number of constraints per bit is determined as follows. The number of constraints required to specify one

S-box must be multiplied by the number of all S-boxes, which is completely determined by the number of rounds of both

types and their structure. Then the resulting value must be divided by the value r that determines the length of the output

on one iteration of the SPONGE construction.

5. NUMERICAL RESULTS FOR MNT-COMPATIBLE PARAMETERS

We calculated the number of rounds with a full layer of S-boxes for a prime field of characteristic p , where the bit

length of the characteristic is equal to 753. As a prime field, we chose one of the fields for which triplets MNT-4 and MNT-6

are defined [11]. In rounds with a full layer of S-boxes, we will place 3 S-boxes, in rounds with a partial layer — one S-box.

We define a linear operator as an MDS matrix of dimension 3 3	 . In this case, the capacity c � � �2 752 1504 and rate r � 752

if you use a byte representation. Power S-boxes were chosen as s x x p( ) �

13

mod , because of min :( , ){ } = 13� �� � �N p 1 1 .

For inverse S-boxes and power S-boxes of the form s x x p( ) �

13

mod , the number of rounds with a full layer of S-boxes is 4

(2 rounds at the beginning, 2 at the end, to eliminate the possibility of both attacks with the chosen plaintext and attacks with

the chosen ciphertext). The number of rounds with a partial layer of S-boxes, according to (4.1) and (4.2) in [5], will be about

60. In this case, the number of constraints per bit is equal to 0.48 for power S-boxes and 0.29 for inverse S-boxes, which is

3.5–5.8 times less than the same indicator for the Pedersen function.

The number of full rounds for the Poseidon we find from the inequality

144

2 2

4

2 6

p

r

N p�

�

�

�

�

 

!

!

� �

� �

full

,

whence we obtain

r
full

�

�

�

�

�

�

�

�

�

�

6 753

4 745

2,

i.e., we have two rounds with a full layer of S-boxes at the beginning and at the end of the algorithm.

The same number of rounds is enough to guarantee security against linear cryptanalysis.

Note than in case of adding 2 extra rounds (one to the beginning, one to the end) and 2 rounds to make r
full

even,

we obtain

r
full

� 4,

so the whole number of full rounds is 8.

CONCLUSIONS

The paper contains the following results.

1. Security estimates were considered against non-binary linear and differential attacks. Let us note that

construction of such estimates uses serious algebraic techniques, in particular, some properties of sums of characters for

an additive group of the finite field, and properties of sums of such characters.

2. We adduce the general parameters for the Poseidon hash function that allows using this hash function in

recurrent SNARK-proofs based on MNT-4 and MNT-6 triplets.

3. We analyzed how to choose S-boxes for such function, for this choice to be optimal from the point of view of

the number of constraints and of security.

4. We showed how many full rounds would be sufficient to guarantee security of such hash function against

non-binary linear and differential attacks.

5. We calculated the number of constraints per bit that is achieved in the proposed realization; a considerable gain

was demonstrated, as compared to the Pedersen hash function.

We provided strict formal proofs for all listed results.

Following [5] and [7], we chose the round functions for random permutations and their parameters in the

following way:
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— the number of rounds with a full S-box layer is chosen as the minimal number that guarantees security against

generalized differential and linear attacks;

— the number of rounds with a partial S-box layer is chosen as the minimal number that guarantees security

against other attacks, called “algebraic” in [5, 7];

— S-BOXes are chosen as power functions in the field that set bijection in this field.

Considering specific features of the hash function application and the need for its compatibility with MNT-4 or

MNT-6 triplets [10], we chose the following parameters of the round functions:

— a prime field Fp where p is a prime number that is used in MNT-4, of the length of 753 bits;

— exponent of the function describing the S-BOX was chosen so as from one side, to guarantee the required level

of security against attacks, and from the other side, to minimize the number of constraints;

— one round with a full S-box layer contains three S-BOXes, and a round with a partial S-box layer contains one

S-BOX.

Such selection of parameters in the case of the prime field with the characteristic bitlength of about 750 bits

(MNT-fields, [11]) allows obtaining of the following characteristics of the hash function at the set security level of

	 �128 bits:

— 4 rounds with a full S-box layer (two rounds at the beginning and two at the end);

— about 60 rounds with a partial S-box layer;

— from 0.28 to 0.48 constraints per bit.

The results obtained show that the Poseidon hash function is secure against non-binary linear and differential

attacks. Given the security level, we can choose parameters of this hash that guarantee its cryptographical security.

An indisputable advantage of the hash function with such structure is its efficiency in utilization for SNARK-proofs. For

completeness of our investigations, it should be noted that very similar results concerning differential and linear attacks

on block ciphers with non-binary operations were obtained in [18–20]. But algorithms and transformations, considered in

these works, were not SNARK-oriented, like HadesMiMC and Poseidon.
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