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Abstrat

We introdue a short signature sheme based on the Computational DiÆe-Hellman assump-

tion on ertain ellipti and hyper-ellipti urves. For standard seurity parameters, the signa-

ture length is half that of a DSA signature with a similar level of seurity. Our short signature

sheme is designed for systems where signatures are typed in by a human or are sent over a

low-bandwidth hannel. We survey a number of properties of our signature sheme suh as

signature aggregation and bath veri�ation.

1 Introdution

Short digital signatures are needed in environments with strong bandwidth onstraints. For ex-

ample, produt registration systems often ask users to key in a signature provided on a CD label.

When a human is asked to type in a digital signature, the shortest possible signature is needed.

Similarly, due to spae onstraints, short signatures are needed when one prints a bar-oded digital

signature on a postage stamp [41, 37℄. As a third example, onsider legay protools that alloate

a �xed short �eld for non-repudiation [1, 25℄. One would like to use the most seure signature that

�ts in the alloted �eld length.

The two most frequently used signatures shemes, RSA and DSA, produe relatively long sig-

natures ompared to the seurity they provide. For example, when one uses a 1024-bit modulus,

RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit modulus, standard DSA

signatures are 320 bits long. Ellipti urve variants of DSA, suh as ECDSA, are also 320 bits

long [2℄. A 320-bit signature is too long to be keyed in by a human.

We propose a signature sheme whose length is approximately 170 bits and whih provides

a level of seurity similar to that of 320-bit DSA signatures. Our signature sheme is seure

against existential forgery under a hosen-message attak (in the random orale model) assuming

the Computational DiÆe-Hellman problem (CDH) is hard on ertain ellipti urves over a �nite

�eld. Generating a signature is a simple multipliation on the urve. Verifying the signature is done

using a bilinear pairing on the urve. Our signature sheme inherently uses properties of urves.

Consequently, there is no equivalent of our sheme in F

�

p

.

Construting short signatures is an old problem. Several proposals show how to shorten DSA

while preserving the same level of seurity. Naahe and Stern [37℄ propose a variant of DSA

where the signature length is approximately 240 bits. Mironov [35℄ suggests a DSA variant with

a similar length and gives a onrete seurity analysis of the onstrution (in the random orale

model). Another tehnique proposed for reduing DSA signature length is signatures with message

reovery [38, 41℄. In suh systems one enodes a part of the message into the signature thus

�
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shortening the total length of the message-signature pair. For long messages, one an then ahieve

a DSA signature overhead of 160 bits. However, for very short messages (e.g., 64 bits) the total

length remains 320 bits. Using our signature sheme, the signature length is always on the order

of 160 bits, however short the message. When the message is not transmitted along with the

signature, DSA signatures with message reovery are just as long as standard DSA signatures. We

also note that Patarin et al. [40℄ onstrut short signatures whose seurity depends on the Hidden

Field Equation (HFE) problem.

Our signature sheme uses groups where the CDH problem is hard, but the Deision DiÆe-

Hellman problem (DDH) is easy. The �rst example of suh groups was given in [27℄ and was

previously used in [26, 10℄. We all suh groups Gap DiÆe-Hellman groups, or GDH groups for

short. We show how to onstrut a signature sheme from GDH groups; prove seurity of the

sheme; and show how to build GDH groups that lead to short signatures. The signature sheme

resembles the undeniable signature sheme of Chaum and Pederson [13℄. Our signature sheme has

several useful properties, desribed in Setion 5. For example, signatures generated by di�erent

people on di�erent messages an be aggregated into a single signature [11℄. The signature also

supports standard extensions suh as threshold signatures and blind signatures [9℄.

Notation. We use E=F

q

to denote an ellipti urve y

2

= x

3

+ ax+ b with oeÆients a; b 2 F

q

.

For r � 1, we use E(F

q

r

) to denote the group of points on E in F

q

r

. We use jE(F

q

r

)j to denote the

number of points in E(F

q

r

).

2 Gap DiÆe-Hellman groups and bilinear maps

Before presenting the signature sheme, we �rst review a few onepts related to bilinear maps and

Gap DiÆe-Hellman groups. We use the following notation:

1. G

1

and G

2

are two (multipliative) yli groups of prime order p;

2. g

1

is a generator of G

1

and g

2

is a generator of G

2

;

3.  is an isomorphism from G

2

to G

1

, with  (g

2

) = g

1

; and

4. e is a bilinear map e : G

1

�G

2

! G

T

.

One an set G

1

= G

2

, but we allow for the more general ase where G

1

6= G

2

so that we an

take advantage of ertain families of non-supersingular ellipti urves as desribed in Setion 4.3.

The proofs of seurity require an eÆiently omputable isomorphism  : G

2

! G

1

. When

G

1

= G

2

and g

1

= g

2

one ould take  to be the identity map. When G

1

6= G

2

we will need to

desribe expliitly an eÆiently omputable isomorphism  : G

2

! G

1

. The map  is essential for

seurity. To illustrate this, we give in the next setion an example of a bilinear map that engenders

an inseure signature sheme preisely beause  does not exist.

With this setup we obtain natural generalizations of the CDH and DDH problems:

Computational o-DiÆe-Hellman (o-CDH) on (G

1

; G

2

): Given g

2

; g

a

2

2 G

2

and h 2 G

1

ompute h

a

2 G

1

.

Deision o-DiÆe-Hellman (o-DDH) on (G

1

; G

2

): Given g

2

; g

a

2

2 G

2

and h; h

b

2 G

1

output

yes if a = b and no otherwise. When the answer is yes we say that (g

2

; g

a

2

; h; h

a

) is a

o-DiÆe-Hellman tuple.

When G

1

= G

2

these problems redue to standard CDH and DDH.

Next we a de�ne a o-GDH gap group pair to be a pair of groups (G

1

; G

2

) on whih o-DDH is

easy but o-CDH is hard. We de�ne the advantage of an algorithm A in solving the Computational
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o-DiÆe-Hellman problem on (G

1

; G

2

) as

Adv o-CDH

A

def

= Pr

h

A(g

2

; g

a

2

; h) = h

a

: a

R

 Z

p

; h

R

 G

1

i

:

In other words, the probability is over the uniform random hoie of a from Z

p

and h from G

1

, and

over the oin tosses of A. We say that an algorithmA (t; �)-breaks Computational o-DiÆe-Hellman

on (G

1

; G

2

) if A runs in time at most t, and Adv o-CDH

A

is at least �.

De�nition 2.1. Two groups (G

1

; G

2

) are a (t; �)-Gap o-DiÆe-Hellman pair (o-GDH pair) if they

satisfy the following properties:

1. The group ation on both G

1

and G

2

and the map  from G

2

to G

1

an be omputed in one

time unit.

2. The Deision o-DiÆe-Hellman problem on (G

1

; G

2

) an be solved in one time unit.

3. No algorithm (t; �)-breaks Computational o-DiÆe-Hellman on (G

1

; G

2

).

When (G

1

; G

1

) is a (t; �) o-GDH pair we say G

1

is a (t; �)-Gap-DiÆe-Hellman group (GDH group).

Note that in the above de�nition we are normalizing time so that all the above algorithms

take one time unit, and under this normalization there is no algorithm that (t; �)-breaks CDH on

(G

1

; G

2

).

2.1 Bilinear maps

Currently, the only examples of Gap DiÆe-Hellman groups arise from bilinear maps [27℄. We briey

de�ne bilinear groups and show how they give GDH groups. It is possible that other onstrutions

for Gap DiÆe-Hellman groups exist.

Let G

1

and G

2

be two groups as above, with an additional group G

T

suh that jG

1

j = jG

2

j =

jG

T

j. A bilinear map is a map e : G

1

�G

2

! G

T

with the following properties:

1. Bilinear: for all u 2 G

1

; v 2 G

2

and a; b 2 Z, e(u

a

; v

b

) = e(u; v)

ab

.

2. Non-degenerate: e(g

1

; g

2

) 6= 1.

De�nition 2.2. Two order-p groups (G

1

; G

2

) are a (t; �)-bilinear group pair if they satisfy the

following properties:

1. The group ation on both G

1

and G

2

and the map  from G

2

to G

1

an be omputed in one

time unit.

2. A group G

T

of order p and a bilinear map e : G

1

� G

2

! G

T

exist, and e is omputable in

one time unit.

3. No algorithm (t; �)-breaks Computational o-DiÆe-Hellman on (G

1

; G

2

).

Joux and Nguyen [26℄ showed that an eÆiently-omputable bilinear map e provides an algo-

rithm for solving the Deision o-DiÆe-Hellman problem as follows: For a tuple (g

2

; g

a

2

; h; h

b

) where

h 2 G

1

we have

a = b mod p () e(h; g

a

2

) = e(h

b

; g

2

):

Consequently, if two groups (G

1

; G

2

) are a (t; �)-bilinear group pair, then they are also a (t=2; �)-

o-GDH group pair. The onverse is probably not true.
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3 Signature shemes based on Gap DiÆe-Hellman groups

We present a signature sheme that works in any Gap o-DiÆe-Hellman group pair (G

1

; G

2

). We

prove seurity of the sheme and, in the next setion, show how it leads to short signatures. The

sheme resembles the undeniable signature sheme proposed by Chaum and Pederson [13℄. Okamoto

and Pointheval [39℄ briey note that gap problems an give rise to signature shemes. However,

most gap problems will not lead to short signatures.

Let (G

1

; G

2

) be (t; �) o-Gap DiÆe-Hellman pair where jG

1

j = jG

2

j = p. A signature � is an

element of G

1

. The signature sheme omprises three algorithms, KeyGen, Sign, and Verify. It

makes use of a full-domain hash funtion H : f0; 1g

�

! G

1

. The seurity analysis views H as a

random orale [7℄. In Setion 3.2 we weaken the requirement on the hash funtion H.

Key generation. Pik random x

R

 Z

p

, and ompute v  g

x

2

. The publi key is v 2 G

2

. The

seret key is x.

Signing. Given a seret key x 2 Z

p

, and a message M 2 f0; 1g

�

, Compute h H(M) 2 G

1

, and

�  h

x

. The signature is � 2 G

1

.

Veri�ation. Given a publi key v 2 G

2

, a messageM 2 f0; 1g

�

, and a signature � 2 G

1

, ompute

h H(M) 2 G

1

and verify that (g

2

; v; h; �) is a valid o-DiÆe-Hellman tuple. If so, output

valid; if not, output invalid.

A signature is a single element of G

1

. To onstrut short signatures, therefore, we need o-GDH

pairs where elements in G

1

have a short representation. We onstrut suh groups in Setion 4.

3.1 Seurity

We prove the seurity of the Signature Sheme against existential forgery under a hosen-message

attaks in the random orale model. Existential unforgeability under a hosen message attak [24℄

for a signature sheme (KeyGen, Sign, and Verify) is de�ned using the following game between a

hallenger and an adversary A:

Setup. The hallenger runs algorithm KeyGen to obtain a publi key PK and private key SK.

The adversary A is given PK.

Queries. Proeeding adaptively, A requests signatures with PK on at most q

S

messages of

his hoieM

1

; : : : ;M

q

s

2 f0; 1g

�

. The hallenger responds to eah query with a signature

�

i

= Sign(SK;M

i

).

Output. Eventually, A outputs a pair (M;�) and wins the game if (1) M is not any of

M

1

; : : : ;M

q

s

, and (2) Verify(PK;M; �) = valid.

We de�ne Adv Sig

A

to be the probability that A wins in the above game, taken over the oin tosses

of KeyGen and of A.

De�nition 3.1. A forger A (t; q

S

; q

H

; �)-breaks a signature sheme if A runs in time at most t; A

makes at most q

S

signature queries and at most q

H

queries to the hash funtion; and Adv Sig

A

is

at least �. A signature sheme is (t; q

S

; q

H

; �)-existentially unforgeable under an adaptive hosen-

message attak if no forger (t; q

S

; q

H

; �)-breaks it.

The following theorem shows that the signature sheme is seure.
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Theorem 3.2. Let (G

1

; G

2

) be a (t

0

; �

0

)-o-GDH group pair of order p. Then the signature sheme

on (G

1

; G

2

) is (t; q

S

; q

H

; �)-seure against existential forgery under an adaptive hosen-message

attak (in the random orale model) for all t and � satisfying

� � e(q

S

+ 1) � �

0

and t � t

0

� 

G

1

(q

H

+ 2q

S

);

and 

G

1

is a onstant that depends on G

1

. Here e is the base of the natural logarithm.

Hene, seurity of the signature sheme follows from the hardness of o-CDH on (G

1

; G

2

). When

G

1

= G

2

seurity is based on the standard Computational DiÆe-Hellman assumption in G

1

.

Proof of Theorem 3.2. Suppose A is a forger algorithm that (t; q

S

; q

H

; �)-breaks the signature

sheme. We show how to onstrut a t

0

-time algorithm B that solves o-CDH in (G

1

; G

2

) with

probability at least �

0

. This will ontradit the fat that (G

1

; G

2

) are a (t

0

; �

0

)-o-GDH group pair.

Let g

2

be a generator of G

2

. Algorithm B is given g

2

; u 2 G

2

and h 2 G

1

, where u = g

a

2

. Its

goal is to output h

a

2 G

1

. Algorithm B simulates the hallenger and interats with forger A as

follows.

Setup. Algorithm B starts by giving A the generator g

2

and the publi key u � g

r

2

2 G

2

, where r

is random in Z

p

.

H-queries. At any time algorithm A an query the random orale H. To respond to these queries

algorithm B maintains a list of tuples hM

j

; w

j

; b

j

; 

j

i as explained below. We refer to this list

as the H-list. The list is initially empty. When A queries the orale H at a pointM

i

2 f0; 1g

�

,

algorithm B responds as follows:

1. If the query M

i

already appears on the H-list in a tuple hM

i

; w

i

; b

i

; 

i

i then algorithm B

responds with H(M

i

) = w

i

2 G

1

.

2. Otherwise, B generates a random oin 

i

2 f0; 1g so that Pr[

i

= 0℄ = 1=(q

S

+ 1).

3. Algorithm B piks a random b

i

2 Z

p

.

If 

i

= 0, B omputes w

i

 h �  (g

2

)

b

i

2 G

1

. If 

i

= 1, B omputes w

i

  (g

2

)

b

i

2 G

1

.

4. Algorithm B adds the tuple hM

i

; w

i

; b

i

; 

i

i to the H-list and responds to A by setting

H(M

i

) = w

i

.

Note that either way w

i

is uniform in G

1

and is independent of A's urrent view as required.

Signature queries. LetM

i

be a signature query issued by A. Algorithm B responds to this query

as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a w

i

2 G

1

suh that H(M

i

) = w

i

. Let hM

i

; w

i

; b

i

; 

i

i be the orresponding tuple on the H-list. If



i

= 0 then B reports failure and terminates.

2. We know 

i

= 1 and hene w

i

=  (g

2

)

b

i

2 G

1

. De�ne �

i

=  (u)

b

i

�  (g

2

)

rb

i

2 G

1

.

Observe that �

i

= w

a+r

i

and therefore �

i

is a valid signature on M

i

under the publi key

u � g

r

2

= g

a+r

2

. Algorithm B gives �

i

to algorithm A.

Output. Eventually algorithm A produes a message-signature pair (M

f

; �

f

) suh that no signa-

ture query was issued forM

f

. If there is no tuple on the H-list ontainingM

f

then B issues a

query itself for H(M

f

) to ensure that suh a tuple exists. We assume �

f

is a valid signature on

M

f

under the given publi key; if it is not, B reports failure and terminates. Next, algorithm B

�nds the tuple hM

f

; w; b; i on the H-list. If  = 1 then B reports failure and terminates.

Otherwise,  = 0 and therefore H(M

f

) = w = h � (g

2

)

b

. Hene, � = h

a+r

� (g

2

)

b(a+r)

. Then

B outputs the required h

a

as h

a

 �=(h

r

�  (u)

b

�  (g

2

)

rb

).
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This ompletes the desription of algorithm B. It remains to show that B solves the given instane

of the o-CDH problem in (G

1

; G

2

) with probability at least �

0

. To do so, we analyze the three

events needed for B to sueed:

E

1

: B does not abort as a result of any of A's signature queries.

E

2

: A generates a valid message-signature forgery (M

f

; �

f

).

E

3

: Event E

2

and  = 0 for the tuple ontaining M

f

on the H-list.

B sueeds if all of these events happen. The probability Pr[E

1

^ E

3

℄ deomposes as

Pr[E

1

^ E

3

℄ = Pr[E

1

℄ � Pr[E

2

j E

1

℄ � Pr[E

3

j E

1

^ E

2

℄: (1)

The following laims give a lower bound for eah of these terms.

Claim 1: The probability that algorithm B does not abort as a result of A's signature queries is

at least 1=e. Hene, Pr[E

1

℄ � 1=e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same

message twie. We prove by indution that after A makes i signature queries the probability

that B does not abort is at least (1 � 1=(q

S

+ 1))

i

. The laim is trivially true for i = 0. Let M

i

be A's i'th signature query and let hM

i

; w

i

; b

i

; 

i

i be the orresponding tuple on the H-list. Then

prior to issuing the query, the bit 

i

is independent of A's view|the only value that ould be given

to A that depends on 

i

is H(M

i

), but the distribution on H(M

i

) is the same whether 

i

= 0 or



i

= 1. Therefore, the probability that this query auses B to abort is at most 1=(q

S

+ 1). Using

the indutive hypothesis and the independene of 

i

, the probability that B does not abort after

this query is at least (1 � 1=(q

S

+ 1))

i

. This proves the indutive laim. Sine A makes at most

q

S

signature queries the probability that B does not abort as a result of all signature queries is at

least (1� 1=(q

S

+ 1))

q

S

� 1=e.

Claim 2: If algorithm B does not abort as a result of A's signature queries then algorithm A's

view is idential to its view in the real attak. Hene, Pr[E

2

j E

1

℄ � �.

Proof. The publi key given to A is from the same distribution as a publi key produed by

algorithmKeyGen. Responses to H-queries are as in the real attak sine eah response is uniformly

and independently distributed in G

1

. All responses to signature queries are valid. Therefore, A

will produe a valid message-signature pair with probability at least �. Hene, Pr[E

2

j E

1

℄ � �.

Claim 3: The probability that algorithm B does not abort after A outputs a valid forgery is at

least 1=(q

S

+ 1). Hene, Pr[E

3

j E

1

^ E

2

℄ � 1=(q

S

+ 1).

Proof. Given that events E

1

and E

2

happened, algorithm B will abort only if A generates a forgery

(M

f

; �

f

) for whih the tuple hM

f

; w; b; i on the H-list has  = 1. At the time A generates its

output it knows the value of 

i

for thoseM

i

for whih it issued a signature query. All the remaining



i

's are independent of A's view. Indeed, if A did not issue a signature query for M

i

then the

only value given to A that depends on 

i

is H(M

i

), but the distribution on H(M

i

) is the same

whether 

i

= 0 or 

i

= 1. Sine A ould not have issued a signature query for M

f

we know that 

is independent of A's urrent view and therefore Pr[ = 0 j E

1

^ E

2

℄ � 1=(q

S

+ 1) as required.

Using the bounds from the laims above in equation (1) shows that B produes the orret

answer with probability at least �=e(q

S

+ 1) � �

0

as required. Algorithm B's running time is the

same as A's running time plus the time is takes to respond to (q

H

+q

S

) hash queries and q

S

signature

6



queries. Eah query requires an exponentiation in G

1

whih we assume takes time 

G

1

. Hene, the

total running time is at most t + 

G

1

(q

H

+ 2q

S

) � t

0

as required. This ompletes the proof of

Theorem 3.2.

The analysis used in the proof of Theorem 3.2 resembles Coron's analysis of the Full Domain

Hash (FDH) signature sheme [15℄. We note that Probabilisit Full Domain Hash (PFDH) sig-

natures [16℄ have a tighter seurity redution than FDH signatures. The same improvement to

the seurity redution an be applied to our signature sheme. However, randomizing our signa-

ture sheme as in PFDH would inrease the length of the signature, defeating our main goal of

onstruting short signatures.

The neessity of  : G

2

! G

1

. Reall that the proof of seurity relied on the existene of an

eÆiently omputable isomorphism  : G

2

! G

1

. To show the neessity of  we give an example of

a bilinear map e : G

1

�G

2

! G

T

for whih the o-CDH problem is believed to be hard on (G

1

; G

2

)

and yet the resulting signature sheme is inseure.

Let q be a prime and let G

2

be a subgroup of Z

�

q

of prime order p with generator g. Let G

1

be the group G

1

= f0; 1; : : : ; p � 1g with addition modulo p. De�ne the map e : G

1

� G

2

! G

2

as e(x; y) = y

x

. The map is learly bilinear sine e(ax; y

b

) = e(x; y)

ab

. The o-CDH problem on

(G

1

; G

2

) is as follows: Given g; g

a

2 G

2

and x 2 G

1

ompute ax 2 G

1

. The problem is believed to

be hard sine an algorithm for omputing o-CDH on (G

1

; G

2

) gives an algorithm for omputing

disrete log in G

2

. Hene, (G

1

; G

2

) satis�es all the onditions of Theorem 3.2 exept that there is

no known omputable isomorphism  : G

2

! G

1

. It is is easy to see that the resulting signature

sheme from this bilinear map is inseure: Given one message-signature pair, it is easy to reover

the seret key.

We omment that one an avoid using  at the ost of making a stronger omplexity assumption.

Without  the neessary assumption for proving seurity is that no polynomial time algorithm an

ompute h

a

2 G

1

given g

2

; g

a

2

2 G

2

and g

1

; g

a

1

; h 2 G

1

. Sine  naturally exists in all the group

pairs (G

1

; G

2

) we are onsidering, there is no reason to rely on this stronger omplexity assumption.

3.2 Hashing onto ellipti urves

The signature sheme needs a hash funtion H : f0; 1g

�

! G

1

. In the next setion we use ellipti

urves to onstrut o-GDH groups and therefore we need a hash funtion H : f0; 1g

�

! G

1

where

G

1

is a subgroup of an ellipti urve. Sine it is diÆult to build hash funtions that hash diretly

onto a subgroup of an ellipti urve we slightly relax the hashing requirement.

Let E=F

q

be an ellipti urve de�ned by y

2

= f(x) and let E(F

q

) have order m. Let P 2 E(F

q

)

be a point of prime order p. We wish to hash onto the subgroup G

1

= hP i. Suppose we are given

a hash funtion H

0

: f0; 1g

�

! F

q

� f0; 1g. Suh hash funtions H

0

an be built from standard

ryptographi hash funtions. The seurity analysis will view H

0

as a random orale. We use the

following deterministi algorithm alled MapToGroup to hash messages in f0; 1g

�

onto G

1

. Fix a

small parameter I = dlog

2

log

2

(1=Æ)e, where Æ is some desired bound on the failure probability.

MapToGroup

H

0

: The algorithm de�nes H : f0; 1g

�

! G

1

as follows:

1. Given M 2 f0; 1g

�

, set i 0;

2. Set (x; b) H

0

(i kM) 2 F

q

� f0; 1g, where i is represented as an I-bit string;

3. If f(x) is a quadrati residue in F

q

then do:

3a. Let y

0

; y

1

2 F

q

be the two square roots of f(x). We use b 2 f0; 1g to hoose between these

roots. Choose some full ordering of F

q

and ensure that y

1

is greater than y

0

aording

7



to this ordering (swapping y

0

and y

1

if neessary). Set

~

P

M

2 E(F

q

) to be the point

~

P

M

= (x; y

b

).

3b. Compute P

M

= (m=p)

~

P

M

. Then P

M

is in G

1

. Output MapToGroup

H

0

(M) = P

M

and

stop.

4. Otherwise, inrement i, and go to Step 2; if i reahes 2

I

, report failure.

The failure probability an be made arbitrarily small by piking an appropriately large I. For

eah i, the probability that H

0

(i k M) leads to a point on G is approximately 1=2 (where the

probability is over the hoie of the random orale H

0

). Hene, the expeted number of alls to

H

0

is approximately 2, and the probability that a given message M will be found unhashable is

1=2

(2

I

)

� Æ.

Lemma 3.3. Let E=F

q

be an ellipti urve and let E(F

q

) have order m. Let G

1

be a subgroup

of E(F

q

) of order p. We assume p

2

does not divide m. Suppose the o-GDH signature sheme is

(t; q

S

; q

H

; �)-seure in the groups (G

1

; G

2

) when a random hash funtion H : f0; 1g

�

! G

1

is used.

Then it is (t�2

I



G

1

q

H

; q

S

; q

H

; �)-seure when the hash funtion H is omputed with MapToGroup

H

0

and H

0

is a random hash funtion H

0

: f0; 1g

�

! F

q

� f0; 1g.

Proof Sketh. Suppose a forger algorithm F

0

(t; q

S

; q

H

; �)-breaks the signature sheme on (G

1

; G

2

)

when the hash funtion H is omputed using MapToGroup

H

0

. We build an algorithm F that

(t+ 2

I



G

1

q

H

; q

S

; q

H

; �)-breaks the signature sheme when H is a random orale H : f0; 1g

�

! G

1

.

Our new forger F will run F

0

as a blak box. Algorithm F passes signatures queries made by

F

0

to its own signature orale. F uses its hash orale H : f0; 1g

�

! G

1

to simulate for F

0

the

behavior of MapToGroup

H

0

. It uses an array s

ij

, whose entries are elements of F

q

� f0; 1g. The

array has q

H

rows and 2

I

olumns. On initialization, F �lls s

ij

with uniformly-seleted elements of

F

q

� f0; 1g.

F then runs F

0

, and keeps trak (and indexes) all the unique messagesM

i

for whih F

0

requests

an H

0

hash. When F

0

asks for an H

0

hash of a message w k M

i

whose M

i

the forger F had not

previously seen (and whose w is an arbitrary I-bit string), F sans the row s

ij

, 0 � j < 2

I

. For

eah (x; b) = s

ij

, F follows Step 3 of MapToGroup, above, seeking points in G. For the smallest j

for whih s

ij

maps into G

1

, F replaes s

ij

with a di�erent point (x

i

; b

i

) de�ned as follows. Let

Q

i

= H(M

i

) 2 G

1

. Then F onstruts a random point

~

Q

i

2 E(F

q

) satisfying (m=p)

~

Q

i

= Q

i

as

follows:

1. Let w = (m=p)

�1

mod p. Note that m=p is integer sine p divides m. Furthermore, m=p has

an inverse modulo p sine p

2

does not divide m and hene m=p is relatively prime to p.

2. Pik a random point T

i

2 E(F

q

).

3. Set

~

Q

i

= (x

i

; y

i

) = pT

i

+wQ

i

.

Then

~

Q

i

is a random point in E(F

q

) suh that (m=p)

~

Q

i

= Q

i

. F sets s

ij

= (x

i

; b

i

) where b

i

2 f0; 1g

is set so that (x

i

; b

i

) maps to

~

Q

i

in Step 3a of MapToGroup. Then MapToGroup

H

0

(M

i

) = H(M

i

)

as required.

One this preliminary pathing has been ompleted, F is able to answer H

0

hash queries by

F

0

for strings w k M

i

by simply returning s

iw

. The simulated H

0

whih F

0

sees is statistially

indistinguishable from that in the real attak. Thus, if F

0

sueeds in breaking the signature

sheme using MapToGroup

H

0

then F , in running F

0

while onsulting H, sueeds with the same

likelihood, and su�ers only a running-time penalty from maintaining the additional information

and running the exponentiation in Step 3 of the MapToGroup algorithm. We again assume that

exponentiation in G

1

takes time 

G

1

.
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4 Building o-GDH groups with small representations

Using the Weil [29, pp. 243{245℄ and Tate [18℄ pairings, we obtain o-GDH groups from ertain

ellipti urves. We reall some neessary fats about ellipti urves (see, e.g., [29, 44℄), and then

show how to use ertain urves for short signatures.

4.1 Ellipti urves and the Weil pairing

Our goal is to onstrut bilinear groups (G

1

; G

2

) whih lead to o-GDH groups as disussed in

Setion 2.1. Let E=F

q

be an ellipti urve. We �rst de�ne a useful onstant alled the seurity

multiplier of a subgroup hP i � E(F

q

).

De�nition 4.1. Let q be a prime power, and E=F

q

an ellipti urve with m points in E(F

q

). Let

P in E(F

q

) be a point of prime order p where p

2

- m. We say that the subgroup hP i has a seurity

multiplier �, for some integer � > 0, if the order of q in F

�

p

is �. In other words:

p j q

�

� 1 and p - q

k

� 1 for all k = 1; 2; : : : ; �� 1:

The seurity multiplier of E(F

q

) is the seurity multiplier of the largest prime order subgroup in

E(F

q

).

We desribe two families of urves that provide � = 6. For standard seurity parameters this is

suÆient for obtaining short signatures. It is an open problem to build useful ellipti urves with

slightly higher �, say � = 10 (see Setion 4.5).

Our �rst step is to de�ne G

1

and G

2

. We will then desribe a bilinear map e : G

1

�G

2

! G

T

,

desribe an isomorphism  : G

2

! G

1

, and disuss the intratability of o-CDH on (G

1

; G

2

).

Balasubramanian-Koblitz. Let E=F

q

be an ellipti urve and let P 2 E(F

q

) be a point of

prime order p with p 6= q. Suppose the subgroup hP i has seurity multiplier � > 1, i.e. p - q � 1.

Then, a useful result of Balasubramanian and Koblitz [3℄ shows that E(F

q

�

) ontains a point Q of

order p that is linearly independent of P . We set G

1

= hP i and G

2

= hQi. Then jG

1

j = jG

2

j = p.

Note that G

1

� E(F

q

) and G

2

� E(F

q

�

).

The Weil and Tate pairings. Let E[p℄ be the group of points of order dividing p in E(F

q

�

).

Then the group E[p℄ is isomorphi to Z

p

� Z

p

[44℄ and also G

1

; G

2

� E[p℄. The Weil pairing is a

map e : E[p℄�E[p℄! F

�

q

�

with the following properties:

1. Identity: for all R 2 E[p℄, e(R;R) = 1.

2. Bilinear: for all R

1

; R

2

2 E[p℄ and a; b 2 Z we have e(aR

1

; bR

2

) = e(R

1

; R

2

)

ab

.

3. Non-degenerate: if for R 2 E[p℄ we have e(R;R

0

) = 1 for all R

0

2 E[p℄, then R = O.

4. Computable: for all R

1

; R

2

2 E[p℄, the pairing e(R

1

; R

2

) is omputable in polynomial

time [34℄.

Note that e(R

1

; R

2

) = 1 if and only if R

1

and R

2

are linearly dependent. See [31, 10℄ for a de�nition

of the Weil pairing and a desription of the algorithm for omputing it. The Tate pairing [18℄ is

another useful bilinear map on E[p℄. It has properties similar to those of the Weil pairing, but does

not neessarily satisfy Property 1 (identity).

The Weil pairing on the urve E gives a omputable, non-degenerate bilinear map e : G

1

�G

2

!

F

�

q

�

whih enables us to solve the Deision o-DiÆe-Hellman problem on the groups (G

1

; G

2

). When

the Tate pairing is non-degenerate on G

1

�G

2

it an also be used to solve Deision o-DiÆe-Hellman

on (G

1

; G

2

).
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The trae map. We present a omputable isomorphism  : G

2

! G

1

, using the trae map, tr,

whih sends points in E(F

q

�

) to E(F

q

). Let �

1

; : : : ; �

�

be the Galois maps of F

q

�

over F

q

. Also,

for R = (x; y) 2 E(F

q

�

) de�ne �

i

(R) = (�

i

(x); �

i

(y)). Then the trae map tr : E(F

q

�

) ! E(F

q

) is

de�ned by:

tr(R) = �

1

(R) + : : :+ �

�

(R):

Fat 4.2. Let P 2 E(F

q

) be a point of prime order p 6= q and let hP i have seurity multiplier

� > 1. Let Q 2 E(F

q

�

) be a point of order p that is linearly independent of P . If tr(Q) 6= O then

tr is an isomorphism from hQi to hP i.

Proof. Suppose R 2 E(F

q

) is a point of order p. If R is not in hP i then P and R generate E[p℄

and therefore E[p℄ � E(F

q

). It follows that e(P;R) 2 F

�

q

has order p sine otherwise e would be

degenerate on E[p℄. But sine � > 1 we know that p does not divide q � 1 and onsequently there

are no elements of order p in F

�

q

. Hene, we must have R 2 hP i. It follows that all the points in

E(F

q

) of order p are ontained in hP i. Sine tr(Q) 6= O, we know that tr(Q) 2 E(F

q

) has order p

and therefore tr(Q) 2 hP i. Hene, tr is an isomorphism from hQi to hP i.

Hene, when tr(Q) 6= O, the trae map is an isomorphism from G

2

to G

1

and is omputable in

polynomial time in � and log q as required.

Intratability of o-CDH on (G

1

; G

2

). The remaining question is the diÆulty of the o-CDH

problem on (G

1

; G

2

). we review neessary onditions for CDH intratability. The best known

algorithm for solving o-CDH on (G

1

; G

2

) is to ompute disrete-log in G

1

. In fat, the disrete-log

and CDH problems in G

1

are known to be omputationally equivalent given some extra information

about the group G

1

[30℄. Therefore, it suÆes to onsider neessary onditions for making the

disrete-log problem on E(F

q

) intratable.

Let hP i be a subgroup of E(F

q

) of order p with seurity multiplier �. We briey disuss two

standard ways for omputing disrete-log in hP i.

1. MOV: Use an eÆiently omputable homomorphism, as in the MOV redution [32℄, to map

the disrete log problem in hP i to a disrete log problem in some extension of F

q

, say F

q

i
. We

then solve the disrete log problem in F

�

q

i

using the Number Field Sieve algorithm [43℄. The

image of hP i under this homomorphism must be a subgroup of F

�

q

i

of order p. Thus we have

pj(q

i

� 1), whih by the de�nition of � implies that i � �. Hene, the MOV method an, at

best, redue the disrete log problem in hP i to a disrete log problem in a subgroup of F

�

q

�

.

Therefore, to ensure that disrete log is hard in hP i we want urves where � is suÆiently

large to make disrete log in F

�

q

�

intratable.

2. Generi: Generi disrete log algorithms suh as Baby-Step-Giant-Step and Pollard's Rho

method [33℄ have a running time proportional to

p

p. Therefore, we must ensure that p

is suÆiently large.

In summary, we want urves E=F

q

where both a generi disrete log algorithm in E(F

q

) and

the Number Field Sieve in F

�

q

�

are intratable.

4.2 Co-GDH signatures from ellipti urves

We summarize the onstrution for o-GDH groups and adapt the signature sheme to use a group

of points on an ellipti urve.

The o-GDH groups (G

1

; G

2

) we use are de�ned as follows:
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1. Let E=F

q

be an ellipti urve and let P 2 E(F

q

) be a point of prime order p where (1) p 6= q,

(2) p - q � 1, and (3) p

2

does not divide jE(F

q

)j.

2. Let � > 1 be the seurity multiplier of hP i. By Balasubramanian and Koblitz [3℄ there exists

a point Q 2 E(F

q

�

) that is linearly independent of P . It is easy to onstrut suh a Q in

expeted polynomial time one the number of points in E(F

q

�

) is known. Sine � > 1 we

know that Q 62 E(F

q

). We ensure that tr(Q) 6= O. If tr(Q) = O replae Q by Q+ P . Then

Q+ P is of order p, it is linearly independent of P , and tr(Q+ P ) 6= O sine tr(P ) 6= O.

3. Set G

1

= hP i and G

2

= hQi.

4. Sine P and Q are linearly independent, the Weil pairing gives a non-degenerate bilinear map

e : G

1

� G

2

! F

�

q

�

. It an be omputed in polynomial time in � and log q. When the Tate

pairing is non-degenerate on G

1

�G

2

it an also be used as a bilinear map.

5. Sine tr(Q) 6= O the trae map on E(F

q

�

) is an isomorphism from G

2

to G

1

omputable in

polynomial time in � and log q.

With these subgroups G

1

; G

2

of the ellipti urve E=F

q

the signature sheme works as follows.

Reall that MapToGroup

H

0

is a hash funtion MapToGroup

H

0

: f0; 1g

�

! G

1

built from a hash

funtion H

0

: f0; 1g

�

! F

�

q

� f0; 1g as desribed in Setion 3.2.

Key generation Pik random x

R

 Z

p

, and ompute V  xQ. The publi key is V 2 E(F

q

�

).

The seret key is x.

Signing Given a seret key x 2 Z

p

, and a message M 2 f0; 1g

�

, do:

1. Compute R MapToGroup

H

0

(M) 2 G

1

,

2. �  xR 2 E(F

q

), and

3. output the x-oordinate of � as the signature s on M . Then s 2 F

q

.

Veri�ation Given a publi key V 2 G

2

, a message M 2 f0; 1g

�

, and a signature s 2 F

q

do:

1. Find a y 2 F

q

suh that � = (s; y) is a point of order p in E(F

q

). If no suh y exists,

output invalid and stop.

2. Compute R MapToGroup

H

0

(M) 2 G

1

,

3. Test if either e(�;Q) = e(R;V ) or e(�;Q)

�1

= e(R;V ).

If so, output valid; Otherwise, output invalid.

The signature length is dlog

2

qe. Note that during veri�ation we aept the signature if

e(�;Q)

�1

= e(R;V ). This is to aount for the fat that the signature s 2 F

q

ould have ome

from either the point � or �� in E(F

q

).

Seurity. By Theorem 3.2 it suÆes to study the diÆulty of o-CDH on (G

1

; G

2

). The best

known algorithm for solving the o-CDH problem on (G

1

; G

2

) requires the omputation of a disrete

log in G

1

or the omputation of a disrete log in F

�

q

�

.

4.3 Using non-supersingular urves over �elds of high harateristi

It remains to build ellipti urves with the desired seurity multiplier �. In the next two setions we

show urves with seurity multiplier, � = 6. We begin by desribing a family of non-supersingular

ellipti urves with � = 6. This family is outlined by Miyaji et al. [36℄. We all these MNT urves.

The idea is as follows: Suppose q = (2`)

2

+ 1 and p = (2`)

2

� 2` + 1 for some ` 2 Z. Then it

an be veri�ed that p divides q

6

� 1, but does not divide q

i

� 1 for 0 < i < 6. So, when p is prime,

a urve E=F

q

with p points is likely to have seurity multiplier � = 6.
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Disriminant Signature Size DLog Seurity MOV Seurity

D dlog

2

qe dlog

2

pe d6 log

2

qe

13368643 149 149 894

254691883 150 147 900

8911723 157 157 942

62003 159 158 954

12574563 161 161 966

1807467 163 163 978

6785843 168 166 1008

28894627 177 177 1062

153855691 185 181 1110

658779 199 194 1194

1060147 203 203 1218

20902979 204 204 1224

9877443 206 206 1236

Table 1: Non-supersingular ellipti urves for o-GDH Signatures. E is a urve over the prime �eld

F

q

and p is the largest prime dividing its order. The MOV redution maps the urve onto the �eld

F

q

6
. D is the disriminant of the omplex multipliation �eld of E=F

q

.

To buildE=F

q

with p points as above we use omplex multipliation [8, hapter VIII℄. We briey

explain how to do so. Suppose we had integers y; t and another positive integer D = 3 mod 4 suh

that

q = (t

2

+Dy

2

)=4 (2)

is an integer prime. Then the omplex multipliation method will produe an ellipti urve E=F

q

with q + 1� t points in time O(D

2

(log q)

3

). The value t is alled the trae of the urve.

We want a urve over F

q

with p points where q = (2`)

2

+ 1 and p = (2`)

2

� 2`+ 1. Therefore,

t = q + 1� p = 2`+ 1. Plugging these values into (2) we get 4((2`)

2

+ 1) = (2`+ 1)

2

+Dy

2

whih

leads to:

(6`� 1)

2

� 3Dy

2

= �8: (3)

For a �xed D = 3 mod 4, we need integers `; y satisfying the equation above suh that q = (2`)

2

+1

is prime and p = (2`)

2

� 2`+ 1 is prime (or is a small multiple of a prime). For any suh solution

we an verify that we get a urve E(F

q

) with seurity multiplier � = 6. Finding integer solutions

`; y to an equation of type (3) is done by reduing it to Pell's equation, whose solution is well

known [45℄.

Table 1 gives some values of D that lead to suitable urves for our signature sheme. For

example, we get a urve E=F

q

where q is a 168-bit prime. Signatures using this urve are 168-bits

while the best algorithm for o-CDH on E(F

q

) requires either (1) a generi disrete log algorithm

taking time approximately 2

83

, or (2) a disrete log in a 1008-bit �nite �eld of large harateristi.

4.4 A speial supersingular urve

Another method for building urves with seurity multiplier � = 6 is to use a speial supersingular

urve E=F

3

. Spei�ally, we use the urve E : y

2

= x

3

+2x� 1 over F

3

. The MOV redution maps

12



the disrete log problem in E(F

3

`

) to F

�

3

6`

. We use two simple lemmas to desribe the behavior of

these urves. (See also [47, 28℄.)

Lemma 4.3. The urve E

+

de�ned by y

2

= x

3

+ 2x+ 1 over F

3

satis�es

jE

+

(F

3

`

)j =

(

3

`

+ 1 +

p

3 � 3

`

when ` = �1 mod 12; and

3

`

+ 1�

p

3 � 3

`

when ` = �5 mod 12:

The urve E

�

de�ned by y

2

= x

3

+ 2x� 1 over F

3

satis�es

jE

�

(F

3

`

)j =

(

3

`

+ 1�

p

3 � 3

`

when ` = �1 mod 12; and

3

`

+ 1 +

p

3 � 3

`

when ` = �5 mod 12:

Proof. See [28, setion 2℄.

Lemma 4.4. Let E be an ellipti urve de�ned by y

2

= x

3

+2x�1 over F

3

`

, where ` mod 12 equals

�1 or �5. Then jE(F

3

`

)j divides 3

6`

� 1.

Proof. See [47℄.

Together, Lemmas 4.3 and 4.4 show that, for the relevant values of `, groups on the urves

E

+

=F

3

`

and E

�

=F

3

`

will have seurity multiplier � at most 6 (more spei�ally: � j 6). Whether

the seurity parameter atually is 6 for a partiular prime subgroup of a urve must be determined

by omputation.

Automorphism of E

+

; E

�

=F

3

6`

: Both urves E

+

and E

�

have a useful automorphism that

make the prime-order subgroups of E

+

(F

3

`

) and E

�

(F

3

`

) into GDH groups (as opposed to o-GDH

groups). This fat an be used to shrink the size of the publi key sine it makes it possible for for

the publi key to live in E(F

3

`

) as opposed to E(F

3

6`

).

The automorphism is de�ned as follows. For ` suh that ` mod 12 is �1 or �5, ompute three

elements of F

3

6`

, u, r

+

, and r

�

, satisfying u

2

= �1; (r

+

)

3

+2r

+

+ 2 = 0, and (r

�

)

3

+2r

�

� 2 = 0.

Now onsider the following maps over F

3

6`

:

�

+

(x; y) = (�x+ r

+

; uy) and �

�

(x; y) = (�x+ r

�

; uy):

Lemma 4.5. Let ` mod 12 equal �1 or �5. Then �

+

is an automorphism of E

+

=F

3

6`

and �

�

is an automorphism of E

�

=F

3

6`

. Moreover, if P is a point of order p on E

+

=F

3

`

(or on E

�

=F

3

`

)

then �

+

(P ) (or �

�

(P )) is a point of order p that is linearly independent of P .

Proof. See Silverman [44, p. 326℄.

Let E=F

3

`

be one of E

+

or E

�

and let P 2 E(F

3

`

) be a point of prime order p. Set G

1

= hP i,

the group generated by P . Let � : E(F

3

`

)! E(F

3

6`

) be the automorphism of the urve from above.

De�ne the modi�ed Weil pairing ê : G

1

� G

1

! F

�

3

6`

as follows: ê(P

1

; P

2

) = e(P

1

; �(P

2

)) where e

is the standard Weil pairing on E[p℄. By Lemma 4.5 we know that �(P ) is linearly independent of

P . Therefore, ê is non-degenerate. It follows that G

1

is a GDH group. This has two impliations

for the signature sheme:

� Seurity of the signature sheme is based on the diÆulty of the standard Computational

DiÆe-Hellman problem in G

1

(as opposed to the o-CDH problem).

� Publi keys are elements of G

1

and, hene, are shorter than publi keys should the automor-

phism not exist.
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urve l Sig Size DLog Seurity MOV Seurity

dlog

2

3

`

e dlog

2

pe d6 log

2

3

`

e

E

�

79 126 126 752

E

+

97 154 151 923

E

+

121 192 155 1151

E

+

149 237 220 1417

E

+

163 259 256 1551

E

�

163 259 259 1551

E

+

167 265 262 1589

Table 2: Supersingular ellipti urves for GDH signatures. Here p is the largest prime divisor of

jE(F

3

`

)j. The MOV redution maps the urve onto a �eld of harateristi 3 of size 3

6`

.

Useful urves. Some useful instantiations of these urves are presented in Table 2. Note that

we restrit these instantiations to those where ` is prime, to avoid Weil-desent attaks [21, 22℄,

exept for ` = 121. It has reently been shown that ertain Weil-desent attaks are not e�etive

for this ase [17℄, suggesting that it may be safe to use.

Performane. Galbraith et al. [20℄ and Baretto et al. [4℄ show that the Frobenius map on the

urves E

+

; E

�

an be used to speed the omputation of the Weil and Tate pairings on these

urves. This results in a signi�ant speed-up to the signature-veri�ation algorithm. Consequently,

the signature sheme using these urves is muh faster than the sheme using the urves from the

previous setion.

The bad news. MOV redues the disrete log problem on E

+

(F

3

`

) and E

�

(F

3

`

) to a disrete

log problem in F

�

3

6`

. A disrete-log algorithm due to Coppersmith [14, 43℄ is spei�ally designed

to ompute disrete log in small harateristi �elds. Consequently, a disrete-log problem in F

�

3

n

is muh easier than a disrete-log problem in F

�

p

where p is a prime of approximately the same size

as 3

n

. To get seurity equivalent to DSA using a 1024-bit prime, we would have to use a urve

E(F

3

`

) where 3

6`

is muh larger than 1024 bits. This leads to muh longer signatures, defeating

the point of using these urves. In other words, for a �xed signature length, these supsersingular

urves lead to a signature with redued seurity ompared to the urves of the previous setion.

4.5 An open problem: higher seurity multipliers

With the urves of Setion 4.3, a seurity multiplier of � = 6 is suÆient for onstruting short

signatures with seurity omparable to DSA using a 1024-bit prime. However, to obtain seurity

omparable to DSA using a 2048-bit prime with � = 6 we get signatures of length 2048=6 = 342

bits. Ellipti urves with higher �, say � = 10, would result in short signatures when higher seurity

is needed (suh as 2048-bit disrete-log seurity).

Let q be a large prime power, say, q > 2

160

. It is urrently an open problem to onstrut an

ellipti urve E=F

q

suh that E(F

q

) has � = 10 and E(F

q

) has prime order. Baretto et al. [5℄

show how to build ellipti urves E suh that E(F

q

) has a given seurity multipliers �. However,

the largest prime order subgroup of E(F

q

) is muh smaller than q. Consequently, these urves

annot be used for seure short signatures|a generi disrete-log algorithm in E(F

q

) will break

the sheme in time proportional to

p

p where p is the largest prime fator of jE(F

q

)j.

14



One ould also build GDH groups of higher genus. Galbraith [19℄ onstruts supersingular urves

of higher genus with a \large" seurity multiplier. For example, the Jaobian of the supersingular

urve y

2

+ y = x

5

+ x

3

has seurity multiplier 12 over F

2

`

. Sine a point on the Jaobian of this

urve of genus two is haraterized by two values in F

2

`

(the two x-oordinates in a redued divisor),

the length of the signature is 2` bits. Hene, we might obtain a signature of length 2` with seurity

of omputing CDH in the �nite �eld F

2

12`

. This fator of 6 between the length of the signature

and the degree of the �nite �eld is the same as in the ellipti urve ase. Hene, this genus 2

urve does not improve the seurity of the signature, but does give more variety in urves used for

short signatures. Disrete log on the Jaobian of these urves is reduible to disrete-log in a �eld

of harateristi 2 and onsequently one must take Coppersmith's disrete log algorithm [14℄ into

aount, as disussed at the end of Setion 4.4.

To obtain larger seurity multipliers, Rubin and Silverberg [42℄ propose ertain Abelian varieties.

Super�ially, they show that signatures produed using the urve of Setion 4.4 an be shortened

by 20%. The result is an n-bit signature where the pairing redues the disrete log problem to a

�nite �eld of size approximately 2

7:5n

. This is the only useful example we urrently know of where

the multiplier is greater than 6.

5 Extensions

Our signatures support threshold signatures and bath veri�ation. Surprisingly, signatures from

distint people on distint messages an be aggregated into a single onvining signature. We

briey survey these extensions here and refer to Boldyreva [9℄, Verheul [46℄, and Boneh et al. [11℄

for a full desription and proofs of seurity.

5.1 Aggregate signatures

Common environments require managing many signatures by di�erent parties on distint messages.

For example, erti�ate hains ontain signatures on distint erti�ates issued by various Certi�-

ate Authorities. Our signature sheme enables us to aggregate multiple signatures by distint

entities on distint messages into a single short signature. Any party that has all the signatures

an aggregate signatures, and aggregation an be done inrementally: Two signatures are aggre-

gated, then a third is added to the aggregate, and so on. See [11℄ for more appliations.

Let (G

1

; G

2

) be a bilinear group pair of prime order p. Suppose n users eah have a publi-

private key pair. For i = 1; : : : ; n, user i has private key x

i

2 Z

p

and publi key v

i

= g

x

i

2

2 G

2

.

Suppose user i signs a message M

i

2 f0; 1g

�

to obtain the signature �

i

= H(M

i

)

x

i

2 G

1

. The

aggregate of all these signatures is omputed simply as �  �

1

�

2

� � � �

n

2 G

1

.

Aggregate veri�ation: We are given all publi keys v

1

; : : : ; v

n

2 G

2

, all messages M

1

; : : : ;M

n

2

f0; 1g

�

, and the aggregate signature � 2 G

1

. To verify that, for all i = 1; : : : ; n, user i has signed

message M

i

, we test that

1. The messages M

1

; : : : ;M

n

are all distint, and

2. e(�; g

2

) =

Q

n

i=1

e(H(M

i

); v

i

).

If both onditions hold, we aept the aggregate signature. Otherwise, we rejet.

We refer to [11℄ for the exat seurity model and the proof of seurity. An attaker who an

existentially forge an aggregate signature an be subverted to solve o-CDH on (G

1

; G

2

). We note

that aggregate signature veri�ation requires a bilinear map|a generi Gap DiÆe-Hellman group

is apparently insuÆient. Generi Gap DiÆe-Hellman groups are suÆient for verifying aggregate
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signatures on the same message by di�erent people, or for verifying aggregate signatures on distint

messages by the same person.

5.2 Bath veri�ation

Suppose n users all sign the same message M 2 f0; 1g

�

. We obtain n signatures �

1

; : : : ; �

n

. We

show that these n signatures an be veri�ed as a bath muh faster than verifying them one by

one. A similar property holds for other signature shemes [6℄.

Let (G

1

; G

2

) be a o-GDH group pair of prime order p. Suppose user i's private key is x

i

2 Z

p

and his publi key is v

i

= g

x

i

2

2 G

2

. Signature �

i

is �

i

= H(M)

x

i

2 G

1

. To verify the n signatures

as a bath we use a tehnique due to Bellare et al. [6℄:

1. Pik random integers 

1

; : : : ; 

n

from the range [0; B℄ for some value B. This B ontrols the

error probability as disussed below.

2. Compute V  

Q

n

i=1

v



i

i

2 G

2

and U  

Q

n

i=1

�



i

i

2 G

1

.

3. Test that (g

2

; V;H(M); U) is a o-DDH tuple. Aept all n signatures if so; rejet otherwise.

Theorem 3.3 of [6℄ shows that we inorretly aept the n signatures with probability at most

1=B. Hene, verifying the n signatures as a bath is faster than verifying them one by one. Note

that if all signers are required to prove knowledge of their private keys, then taking 

1

= : : : = 

n

= 1

is suÆient, yielding even faster bath veri�ation [9℄. A similar bath veri�ation proedure an

be used to verify quikly n signatures on distint messages issued by the same publi key.

5.3 Threshold signatures

Using standard seret sharing tehniques [33℄, our signature sheme gives an immediate robust

t-out-of-n threshold signature [9℄. In a threshold signature sheme, there are n parties where eah

possesses a share of a private key. Eah party an use its share of the private key to produe a

share of a signature on some message M . A omplete signature on M an only be onstruted if

at least t shares of the signature are available.

A robust t-out-of-n threshold signature sheme derives from our signature sheme as follows. A

entral authority generates a publi/private key pair. Let x 2 Z

p

be the private key and v = g

x

2

2 G

2

be the publi key. The entral authority piks a random degree t � 1 polynomial ! 2 Z

p

[X℄ suh

that !(0) = x. For i = 1; : : : ; n, the authority gives user i the value x

i

= !(i), its share of the

private key. The authority publishes the publi key v and n values u

i

= g

x

i

2

2 G

2

.

When a signature a on a message M 2 f0; 1g

�

is needed eah party that wishes to partiipate

in signature generation publishes its share of the signature as �

i

= H(M)

x

i

2 G

1

. Without loss of

generality, assume users 1; : : : ; t partiipate and generate shares �

1

; : : : ; �

t

. Anyone an verify that

share �

i

is valid by heking that (g

2

; u

i

;H(M); �

i

) is a o-DiÆe-Hellman tuple. When all t shares

are valid, the omplete signature is reovered as

�  

t

Y

i=1

�

�

i

i

where �

i

=

Q

t

i=1;j 6=i

(0� j)

Q

t

i=1;j 6=i

(i� j)

(mod p):

If fewer than t users are able to generate a signature on some message M then these users an

be used to solve o-CDH on (G

1

; G

2

) [9℄. This threshold sheme is robust: A partiipant who

ontributes a bad partial signature �

i

will be deteted immediately sine (g

2

; u

i

;H(M); �

i

) will not

be a o-DiÆe-Hellman tuple.

We note that there is no need for a trusted third party to generate shares of the private key.

The n users an generate shares of the private key without the help of a trusted third party using

the protool due to Gennaro et al. [23℄.
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6 Conlusions

We presented a short signature based on bilinear maps on ellipti urves. A signature is only one

element in a �nite �eld. Standard signatures based on disrete log suh as DSA require two elements.

Our signatures are muh shorter than all urrent variants of DSA for the same seurity. We showed

that the sheme is existentially unforgeable under a hosen message attak (in the random orale

model) assuming the Computational DiÆe-Hellman problem is hard in ertain ellipti-urve groups.

More generally, the signature sheme an be instantiated on any Gap DiÆe-Hellman group or o-

GDH group pair.

We presented two families of ellipti urves that are suitable for obtaining short signatures. The

�rst, based on [36℄, is a family of non-supersingular urves over a prime �nite �eld. The seond uses

supersingular urves over F

3

`

. Both families of urves produe n-bit signatures and the disrete log

problem on these urves is reduible to a disrete log problem in a �nite �eld of size approximately

2

6n

. Hene, for 1024-bit seurity we get signatures of size 1024=6 = 171 bits.

We expet that the �rst family of urves (the non-supersingular urves) will be the one used for

short signatures: 171-bit signatures with 1024-bit seurity. As disussed at the end of Setion 4.4,

the seond family of urves (the supersingular urve over F

3

`

) should not be used for short signa-

tures. The problem is that disrete log on these urves redues to a disrete log in a �nite �eld of

harateristi 3 where Coppersmith's algorithm an be used.

Implementation results [20, 4℄ indiate that the signature sheme performs well. Signature

generation is just a simple multipliation on an ellipti urve and is faster than RSA signature

generation. Veri�ation requires two omputations of the bilinear map and is slower than RSA

signature veri�ation.

In Setion 4.5 we outlined an open problem that would enable us to get even better seurity

while maintaining the same length signatures. We hope future work on onstruting ellipti urves

or higher genus urves will help in solving this problem.
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